
I recently stumbled upon Hack This Site, a site that offers “missions” relating to web security,

application reversing, programming, and general hacking topics. I quickly completed all of their

application challenges, with the exception of the last two. Along the way, I found an interesting

one — application challenge #7. I chose to post about this one since there was an interesting

twist in the application which is probably why it was rated as a medium level challenge instead

of easy.

The Analysis

This challenge comes with two files, the executable and a file called “encrypted.enc” that the

executable uses. From opening up encrypted.enc in a hex editor, it is obvious to see that the

contents of encrypted.enc are encrypted or obfuscated in some way. As a result, analyzing it as a

standalone file won’t really provide any information. The executable will have to be reverse

engineered to see just how it manipulates this file and how it derives the password.

Upon startup, the application simply asks for a password. Providing the wrong password simply

causes it to display “Invalid Password” and terminate. Taking a look at how this occurs reveals a

lot of information about how the password is stored and derived.

.text:0040118C cmp [ebp+var_18], 0DCAh

.text:00401193 jnz short loc_4011A8

.text:00401195 lea ecx, [ebp+Dst]

.text:00401198 push ecx

.text:00401199 push offset Format ; "Congratulations,

The password is '%s'"

.text:0040119E call _printf

.text:004011A3 add esp, 8

.text:004011A6 jmp short loc_4011B5

.text:004011A8 ; --

.text:004011A8

.text:004011A8 loc_4011A8: ; CODE XREF: �_main+193 j

.text:004011A8 push offset aInvalidPasswor ; "Invalid

Password"

.text:004011AD call _puts

The application jumps to the “Invalid Password” location at loc_4011A8 if the value stored in

[ebp+var_18] does not equal 0DCAh (3530d). Otherwise it continues on to the congratulations

message. At first instinct, it might be tempting to simply NOP out the jump or to switch it to

whatever [ebp+var_18] is during runtime so the congratulations message is hit. However, this

causes some problems as shown below. The comparison was replaced with a NOP instruction

and the image below shows what happened as a result.

The password becomes unintelligible and

the website where you eventually submit the solution rejects it. It is interesting to look at why

this occurs. Thus, begins the actual analysis of how this works.

The program flow is simple enough. A few loops and

conditionals are the main parts of how this functions.

Identifying the Variables

IDA identifies the following variables used by the application

.text:00401000 File = dword ptr -2Ch

.text:00401000 var_28 = dword ptr -28h

.text:00401000 var_24 = dword ptr -24h

.text:00401000 DstBuf = dword ptr -20h

.text:00401000 var_1C = dword ptr -1Ch

.text:00401000 var_18 = dword ptr -18h

.text:00401000 Dst = byte ptr -14h

.text:00401000 var_4 = byte ptr -4

Some were identified in the initial autoanalysis phase by IDA so only five remain to be manually

identified. The first ones to occur are [ebp+var_4] and [ebp+var1C]:

.text:0040103F loc_40103F: ; CODE XREF: �_main+62 j

.text:0040103F call j___fgetchar

.text:00401044 mov [ebp+var_4], al

.text:00401047 movsx ecx, [ebp+var_4]

.text:0040104B mov edx, [ebp+var_1C]

.text:0040104E add edx, ecx

.text:00401050 mov [ebp+var_1C], edx

.text:00401053 movsx eax, [ebp+var_4]

.text:00401057 cmp eax, 0Ah

.text:0040105A jz short loc_401064

.text:0040105C movsx ecx, [ebp+var_4]

.text:00401060 test ecx, ecx

.text:00401062 jnz short loc_40103F

Looking at this block, it is easy to see that it is a loop, as evidenced by the conditional jnz

instruction back to the top at .text:00401062. [ebp+var_4] stores the value returned from

fgetchar, which is identified as

The next character from the input stream pointed to by stdin. If the stream

is at end-of-file, the end-of-file indicator is set, and the function returns

EOF. If a read error occurs, the error indicator is set, and the function

returns EOF.

[ebp+var_1C] then stores the sum of all of the characters that have been read (including the 0Ah

line feed character when the enter key is pressed). It is obvious at this point to see that this loop

is responsible for reading in the user supplied password. It terminates when the 0Ah line feed

character is read from the stream. From here on, [ebp+var_4] will be referenced as

[ebp+input_char] and [ebp+var_1C] will be references as [ebp+input_sum]. The application then

continues on to open the encrypted.enc file and check for a valid FILE*. Then begins the bulk of

the program. The first block does something interesting with the local variable [ebp+var_24]:

.text:00401093 loc_401093: ; CODE XREF: �_main+7D j

.text:00401093 �; _main+17B j

.text:00401093 mov edx, [ebp+var_24]

.text:00401096 and edx, 4

.text:00401099 test edx, edx

.text:0040109B jz short loc_4010AB

.text:0040109D mov eax, [ebp+var_24]

.text:004010A0 and eax, 1

.text:004010A3 test eax, eax

.text:004010A5 jnz loc_401180

[ebp+var_24] has an “and” operation performed with it and checked to see if the zero flag is set.

If it is, the program jumps to loc_4010AB to continue execution; otherwise, [ebp+var_24] again

has an “and” operation against 1 and jumps out to loc_401180 if the result is 0. IDA gives the

helpful hint that this is a loop (as evidenced by the arrows), but it is easy to see without help that

this is true by looking a bit further down.

.text:00401175 add edx, 1

.text:00401178 mov [ebp+var_24], edx

.text:0040117B jmp loc_401093

[ebp+var_24] is incremented by 1 and a jump is made back to the beginning of the loop.

Therefore, it is easy to deduce that the block with the “and” operations is the conditional part of

the loop. Studying the structure, it is two statements connected by an “or” operation. The body of

the loop will execute as long as (([ebp+var_24] & 4) == 0) || (([ebp+var_24] & 1) == 0). Looking

at for what values this works for reveals that the values 0-4 satisfy this conditional. Since

[ebp+var_24] is initialized to 0 at the start of the program, this is a loop counter that runs from 0

to 4. From here on, [ebp+var_24] will be referred to as [ebp+dst_index] (shown why later).

Assuming normal execution, the program then continues by calling fread at

.text:004010B7 call sub_401279

This is deduced because of the comments noted in IDA, or by simply following the call into until

it hits _fread. That block was responsible for reading a character from the encrypted.enc file and

storing the character in the [ebp+DstBuf] array. The block that follows at

.text:004010D8 loc_4010D8: ; CODE XREF: �_main+C2 j

.text:004010D8 mov eax, [ebp+DstBuf]

.text:004010DB and eax, 0FFh

.text:004010E0 xor eax, [ebp+input_sum]

.text:004010E3 mov ecx, [ebp+var_18]

.text:004010E6 add ecx, eax

.text:004010E8 mov [ebp+var_18], ecx

.text:004010EB mov edx, [ebp+DstBuf]

.text:004010EE and edx, 0FFh

.text:004010F4 xor edx, [ebp+input_sum]

.text:004010F7 mov eax, [ebp+dst_index]

.text:004010FA mov [ebp+eax+Dst], dl

.text:004010FE mov [ebp+var_28], 0

.text:00401105 jmp short loc_401110

is probably the most important block of the entire application. Remembering from earlier,

[ebp+var_18] is compared against 0DCAh to see whether the correct password was supplied or

not. Looking at what happens in this block, it is shown that a character at [ebp+DstBuf] is moved

into eax and has an xor performed against the input sum of the user supplied password. Then its

sum is stored in [ebp+var_18] so [ebp+var_18] will be referred to as [ebp+xor_sum] from here

on. At this point it is actually possible to deduce how the program works and what steps are

required to get a working password. This is because [ebp+xor_sum] is not written to anywhere

else for the remainder of the program so anything that happens has no effect on the outcome of

the comparison with 0DCAh. Also, if analyzed closely, the number of characters of the password

is known (discussed later). This would allow an easy brute-force approach since the way to get

the compared sum is known and the number of characters in the password (a very low amount) is

known. However, for practice, it is interesting to see how the actual password decoding

algorithm works. The analysis won’t be as detailed as the required parts, but still provides an

overview of how the program behaves. The rest of this block shows that the character as

[ebp+eax+Dst] is set to the xor of the input sum and the character that was read. Then a jump is

taken to loc_401110. Here [ebp+var_28] makes its appearance in usage (it was set to 0 prior to

the jump into loc_401110). It is not obvious at first sight what [ebp+var_28] is used for, just that

in this jump it is compared against the the input sum. Ignoring the jump instruction that leaves

this block, the code continues on and performs an if-else comparison of [ebp+eax+Dst] “and” 1.

Both of these blocks have the same exit point, their last instruction always jumps back in the

code to

jmp short loc_401107

so this is the beginning of another loop, more specifically, a for loop because of how the

instructions are organized (the entry into the loop jumped past the increment instructions at

loc_401107). Using this knowledge, it is possible to conclude that [ebp+var_28] is actually a

counter for a for loop and will be referred to as [ebp+counter] from here on. Going back to the if-

else discovered earlier, the code in the “if” body does an arithmetic shift of the value of the array

index to the right by 1 and performs an or with 80h. In the else block, the same thing occurs,

except there is no or with 80h. Once this for loop exists, the value in the current index has 3h

added to it and the index is increased for the next iteration of the topmost loop. Knowing all this,

it is possible to reproduce how this program works. The below programs behaves just like the

application. It doesn’t exactly match the diassembly of the application (I took the liberty of

making few stylistic changes for readability), but it captures the functionality:

Putting Everything Together

#include <stdio.h>

#define CHARS_TO_READ 5

int main(int argc, char* argv[])

{

 unsigned char dst[16] = {0};

 unsigned char enc_char;

 int input_char = 0;

 int input_sum = 0;

 int xor_sum = 0;

 int index = 0;

 printf("Please enter the password:\n");

 while(input_char != 0xA && input_char != EOF)

 {

 input_char = fgetchar();

 input_sum += input_char;

 }

 FILE* enc_file = fopen("encrypted.enc", "rb");

 if(enc_file)

 {

 while(index < CHARS_TO_READ)

 {

 if(fread(&enc_char, sizeof(unsigned char), 1, enc_file)

!= 1)

 {

 printf("An error occured.\n");

 return 0;

 }

 xor_sum += (input_sum ^ enc_char);

 dst[index] = (input_sum ^ enc_char);

 for(int i = 0; i < input_sum; ++i)

 {

 if(dst[index] & 1)

 dst[index] = ((dst[index] >> 1) |

0x80);

 else

 dst[index] = (dst[index] >> 1);

 }

 dst[index] += 3;

 index++;

 }

 if(xor_sum == 0xDCA)

 printf("Congratulations, the password is %s\n", dst);

 else

 printf("Invalid password.\n");

 }

 else

 printf("Failed to open encrypted.enc\n");

 return 0;

}

The xor_sum serves as an xor key for the first five characters in the encrypted.enc file. As the

algorithm runs through, these five characters are decoded to form the five letter password that

solves the solution. In the spirit of the application challenge, the password won’t be disclosed;

however, this post is more than enough information to know how to solve the challenge

(arithmetically or brute force).

A copy of this post is available as a downloadable PDF here

